'Sun in a box' could power a small city
US researchers have come up with a conceptual design for a renewable energy storage system that may be a more affordable alternative to lithium-ion batteries. Described in the journal Energy & Environmental Science, the system would store renewable energy and deliver it back into an electric grid on demand. It may be designed to power a small city not just when the sun is up or the wind is high, but around the clock.
The new design stores heat generated by excess electricity from solar or wind power in large tanks of white-hot molten silicon, then converts the light from the glowing metal back into electricity when it’s needed. The researchers estimate that such a system would be far more affordable than lithium-ion batteries, and would even cost about half as much as pumped hydroelectric storage — the cheapest form of grid-scale energy storage to date.
“Even if we wanted to run the grid on renewables right now we couldn’t, because you’d need fossil-fuelled turbines to make up for the fact that the renewable supply cannot be dispatched on demand,” said MIT engineer Asegun Henry. “We’re developing a new technology that, if successful, would solve this most important and critical problem in energy and climate change — namely, the storage problem.”
The new storage system stems from a project in which the researchers looked for ways to increase the efficiency of a form of renewable energy known as concentrated solar power. Unlike conventional solar plants that use solar panels to convert light directly into electricity, concentrated solar power requires vast fields of huge mirrors that concentrate sunlight onto a central tower, where the light is converted into heat that is eventually turned into electricity.
“The reason that technology is interesting is, once you do this process of focusing the light to get heat, you can store heat much more cheaply than you can store electricity,” Henry said.
Concentrated solar plants store solar heat in large tanks filled with molten salt, which is heated to high temperatures of over 500°C. When electricity is needed, the hot salt is pumped through a heat exchanger, which transfers the salt’s heat into steam. A turbine then turns that steam into electricity.
“This technology has been around for a while, but the thinking has been that its cost will never get low enough to compete with natural gas,” Henry said. “So there was a push to operate at much higher temperatures, so you could use a more efficient heat engine and get the cost down.”
However, if operators were to heat the salt much beyond current temperatures, the salt would corrode the stainless steel tanks in which it’s stored. So Henry’s team looked for a medium other than salt that might store heat at much higher temperatures. They initially proposed a liquid metal and eventually settled on silicon, which can withstand incredibly high temperatures of over 2200°C.
Last year, the team developed a pump that could withstand such blistering heat — it has the highest heat tolerance on record, in fact — and could conceivably pump liquid silicon through a renewable storage system. Since that development, the team has been designing an energy storage system that could incorporate such a high-temperature pump.
Now, the researchers have outlined their concept for a new renewable energy storage system, which they call TEGS-MPV (Thermal Energy Grid Storage-Multi-Junction Photovoltaics). Instead of using fields of mirrors and a central tower to concentrate heat, they propose converting electricity generated by any renewable source, such as sunlight or wind, into thermal energy, via joule heating — a process by which an electric current passes through a heating element. The system could then be paired with existing renewable energy systems, such as solar cells, to capture excess electricity during the day and store it for later use.
“Say everybody’s going home from work, turning on their air conditioners, and the sun is going down, but it’s still hot,” Henry said. “At that point, the photovoltaics are not going to have much output, so you’d have to have stored some of the energy from earlier in the day, like when the sun was at noon. That excess electricity could be routed to the storage system we’ve invented here.”
The system would consist of a large, heavily insulated, 10 m-wide tank made from graphite and filled with liquid silicon, kept at a ‘cold’ temperature of around 1900°C. A bank of tubes, exposed to heating elements, then connects this cold tank to a second, ‘hot’ tank. When electricity from the town’s solar cells comes into the system, this energy is converted to heat in the heating elements. Meanwhile, liquid silicon is pumped out of the cold tank and further heats up as it passes through the bank of tubes exposed to the heating elements, and into the hot tank, where the thermal energy is now stored at a much higher temperature of about 2370°C.
When electricity is needed, say, after the sun has set, the hot liquid silicon — so hot that it’s glowing white — is pumped through an array of tubes that emit that light. Specialised solar cells, known as multijunction photovoltaics, then turn that light into electricity, which can be supplied to the town’s grid. The now-cooled silicon can be pumped back into the cold tank until the next round of storage — acting effectively as a large rechargeable battery.
“One of the affectionate names people have started calling our concept is ‘sun in a box’,” Henry said. “It’s basically an extremely intense light source that’s all contained in a box that traps the heat.”
Henry said the system would require tanks thick and strong enough to insulate the molten liquid within. He explained, “The stuff is glowing white hot on the inside, but what you touch on the outside should be room temperature.”
He proposed that the tanks be made out of graphite — but there are concerns that silicon, at such high temperatures, would react with graphite to produce silicon carbide, which could corrode the tank. To test this possibility, the team fabricated a miniature graphite tank and filled it with liquid silicon. When the liquid was kept at 1980°C for about 60 min, silicon carbide did form, but instead of corroding the tank, it created a thin, protective liner.
“It sticks to the graphite and forms a protective layer, preventing further reaction,” Henry said. “So you can build this tank out of graphite and it won’t get corroded by the silicon.”
Another challenge was the system’s tanks would have to be very large, so it would be impossible to build them from a single piece of graphite. If they were instead made from multiple pieces, these would have to be sealed in such a way as to prevent the molten liquid from leaking out. The researchers demonstrated that they could prevent any leaks by screwing pieces of graphite together with carbon fibre bolts and sealing them with grafoil — flexible graphite that acts as a high-temperature sealant.
The researchers estimate that a single storage system could enable a small city of about 100,000 homes to be powered entirely by renewable energy. The system’s design is also geographically unlimited, according to Henry, meaning that it can be sited anywhere, regardless of a location’s landscape. This is in contrast to pumped hydroelectric — currently the cheapest form of energy storage — which requires locations that can accommodate large waterfalls and dams, in order to store energy from falling water.
“In theory, this is the linchpin to enabling renewable energy to power the entire grid,” Henry said.
Originally published here.
New solar and battery project to support SA grid
The Monarto Energy Project is the first of four nearly identical projects that Flow Power plans...
Mt Piper BESS approved for development
EnergyAustralia's proposal for a new battery energy storage system has received development...
WA trials long-duration storage for remote communities
Battery storage already plays an important role in WA's energy mix, with large-scale...